A Paradigm Shift of the Computing Model for IO-Intensive Big Data Applications

Dongchul Park, Ph.D.

Computer & Electronic Systems Engineering Hankuk University of Foreign Studies (HUFS) May 10, 2019

Outline

ISC for Big Data Processing

Case Study and Demo

Performance Analysis

Summaries and Takeaways

Data Deluge Era

Heavy Data I/O

Big data processing framework (e.g., Hadoop MapReduce)

Issue: I/O Performance

BI and analytics tools: I/O bottleneck

Event	Waits	Time(s)	Avg. wait (ms)	% DB time	Wait class
Direct path read	4,604,339	567.141	123	63.67	User I/O
Direct path read temp	1,955,162	147,298	75	16.54	User I/O
DB CPU		38,874		4.36	
DB file sequential read	117,944	16,399	139	1.84	User I/O
Direct path write temp	597,138	13,507	23	1.52	User I/O

Fastest I/O?

Fastest I/O is the I/O that never happened! (Still, not there yet)

"In-Storage Computing (ISC)"

Legacy CPU-centric Computing

Moving Data is Expensive!

"Moving computation is cheaper than moving data."

Source: HDFS Architecture Guide

"Reducing data movement can help improve both energy and performance."

Source: USENIX HotPower, 2012

"The energy consumed by data movement is starting to exceed the energy consumed by computation."

Source: High Performance Parallel IO, 2014

In-Storage Computing (ISC)

Why ISC (In-Storage Computing)?

I/O Traffic: near dataprocessing paradigmI/O avoidance

Scalability: utilizing unused resources

Better scalability

ISC

Architecture: micro computer

Lower power

Bandwidth: higher internal bandwidth

High performance

ISC software architecture (ISC APIs)

Case Study and Demo

Case Study

Big Data Processing (Hadoop MapReduce)

Big Data Processing Framework

ISC Hadoop MapReduce Framework

ISC Hadoop Demo Screenshot

ISC Hadoop: <u>16.1 Sec</u>.

Legacy Hadoop: 44.1 Sec.

Performance Analysis

Overall Performance

2.3X faster!

(b) Total energy consumption

11.5X lower energy consumption!

Host Resource Usage (CPU & Memory)

→ ISC Hadoop system consumes even less host resources

Scalability (PC vs. Server)

→ ISC Hadoop system scales well even on low-cost desktop.

Power Consumption (Hadoop Cluster)

→ ISC Hadoop Cluster consumes 5X lower power

Summaries and Takeaways

Challenging Problems for ISC

Discrepancy in data representation

Host: File systems

Device: No file systems

Discrepancy in system interfaces

Different programming interfaces between host and device

Data split

Logical data can be split in the physical data boundary

Feature offloading

Which feature should be offloaded?

Takeaways

Computing paradigm shift

From CPU-centric to data-centric for I/O intensive applications

Big data applications can benefit from ISC

 Utilizing low-power high-performance of embedded processors and SSD's high internal bandwidth

Scalability for data center clusters

Scale-in: same performance with fewer nodes

ISC prototype performance

- ISC Hadoop: 2.3X faster & 5X less power
- ISC LevelDB: 10X higher throughput

Q&A

